The Robot Doctor

Episode 105: Robot Motion

Common Core Standards:

- Circle Circumference
- Speed, Distance and Time:
- Linear and Angular Velocity and the relationship between them
- Basic Trigonometry:
- Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

Review:

Orientation is the direction the robot is facing, measured counter-clockwise from the x-axis (typically).
Distance is equal to the amount of rotation of a wheel times the wheels radius

$$
S=\theta_{\text {wheel }} r_{\text {wheel }}
$$

Linear and angular velocity measure the speed in a line, and of rotation, respectively.

$$
\text { speed }=\frac{\text { distance }}{\text { time }}=\text { linear velocity }
$$

$$
\begin{aligned}
& \text { speed of } \\
& \text { rotation }
\end{aligned}=\frac{\text { displacement }}{\text { time }}=\text { angular velocity }
$$

We can equate linear and angular velocities by dividing our distance equation by time

$$
\begin{gathered}
\theta / t=\frac{S / t}{r} \\
\omega=\frac{v}{r} \text { or } \omega \cdot \mathrm{r}=v
\end{gathered}
$$

Using these concepts we can determine our new position based on our starting position ($\mathrm{x}_{0}, \mathrm{y}_{0}$) and our initial heading θ_{0}.

$$
\begin{gathered}
x_{t}=x_{0}+\omega_{w, a v g} r_{w} t \cos \left(\theta_{r}\right) \\
y_{t}=y_{0}+\omega_{w, a v g} r_{w} t \sin \left(\theta_{r}\right) \\
\omega_{w, \text { avg }}=\frac{\omega_{\text {right }}+\omega_{\text {left }}}{2} \\
\theta_{r, t}=\theta_{r, 0}+\frac{r_{w}}{L}\left(\omega_{\text {right }}-\omega_{\text {left }}\right) t
\end{gathered}
$$

These equations are only valid for small time steps since θ is changing
For slow moving robots $0.1-1$ second may be sufficient
For high speed aircraft 0.1-1 millisecond may be required

DRobotWits

Challenge Questions

Imagine you have a robot that is 50 cm wide, with 10 cm radius wheels. The robot starts out at $(0,0)$ with an initial orientation of $\frac{\pi}{4}$.

1) If the robot drives both wheels at a constant speed of 1 radian per second for 10 seconds -what is the robot's final position and orientation?
2) Now what If the robot runs the right wheel at 1 radian per second and the left wheel at 1.5 radians per second. What is the robot's orientation after 1 sec of motion?

