

The Robot Doctor

Lesson 103: Robot Measurements

Common Core Standards:

- Conversion to Metric Units and Unit Prefixes (milli, kilo, etc...)
- Scientific Notation
- Angles and Conversion to Radians
- Basic Speed, Distance and Time relations
- Basic Trigonometry:
 - Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

Review:

Robots usually use the metric system for measurements

Meters for measuring distance, radians for measuring angles and seconds for measuring time

Standard Prefixes:

		Smaller			Larger
centi-	10-2	hundredth	kilo-	103	thousands
milli-	10-3	thousandth	mega-	106	millions
micro-	10-6	millionth	giga-	109	billions
nano-	10-9	billionth	tera-	1012	trillions

$$speed = \frac{distance}{time}$$

$$sin(\theta) = \frac{opposite}{hypotenuse}$$

$$cos(\theta) = \frac{adjacent}{hypotenuse}$$

$$tan(\theta) = \frac{opposite}{adjacent}$$

$$360^{\circ} = 2\pi \ radians$$

Lesson 103 Challenge Questions

1)	If we had a robot with a sonar sensor - how long would it take us to get the return pulse
	- or echo - from an object? We know the object is 10 meters away - and we know that
	the speed of sound in air is 343 meters per second.

2) We have a robot arm that is 50cm long and it is at an angle of 0.5 radians from the floor – how high of a table can it reach?