The Robot Doctor
Episode 104: Robot Localization

Review:

Robots need to find their position on a map relative to landmarks

1. Identify at least 3 landmarks whose position is known on the map
2. Determine range to the landmark
3. Calculate the intersection point of the range circles

To find the intersection of 3 circles:

1. Use the equation for a circle: \((x-a)^2 + (y-b)^2 = r^2\) for landmarks located at \((a,b)\) and at a range of \(r\)
2. Find the radical line by subtracting the two circle equations
3. Substitute back into one of the circle equations to get a quadratic formula in terms of one variable
4. Solve the quadratic equation to find the two value for that single variable
5. Substitute back into the radical line equation to get the two values for the other variable
6. Substitute these two points into the third circle equation to determine which point the robot is at

Challenge Questions

1. The tree is at \((2, 13)\) and the range is 5 meters. The bush is at \((13, 11)\) and the range is 10 meters. Finally, the pond is at \((5,22)\) and the range is 5 meters – what is the robot’s position?

2. Now imagine the robot only sees two landmarks, a pile of rocks and an umbrella. The rocks are at the position \((10,0)\) and the umbrella is at the position \((20,0)\). The distance to the rocks is 5 meters, and the distance to the umbrella is also 5 meters. Can you still determine the position of the robot, even though there are only two landmarks?

©2020 RobotWits, LLC, all rights reserved